Thesauri and Formal Concept Analysis*

Sally Y. Sedelow

Although the title of this talk is “Thesauri and Formal Concept Analysis,” so far as thesauri are concerned the focus will be upon the classic thesaurus, which has been the model for many subsequent thesaural efforts: Roget’s International Thesaurus (3rd edition).

The motivation for my initial involvement (as a professor of literature) with Roget’s was a desire to discuss literature with sufficient rigor so that my students would have some sense of a replicable methodology THEY could use for the appreciation of literature. At the time (early 1960’s), I was interested primarily in the written text, but not specially in the syntax of that text; rather, it was the semantics, the meaning and the way it was structured that captured my attention.

As luck would have it, in the early 1960’s I found myself in a computational setting which prompted me to try to use the computer to push toward greater rigor in the study of literature. A Shakespearean scholar named Caroline Spurgeon had written a multi-volume treatise on chains of images in Shakespeare’s plays; chains such as “rotten, disease, decay, death” that one finds, for example, in Hamlet.

I decided to begin my efforts by designing a program to look for such chains of words; obviously, the chains were perceived as connected words, and the relation connecting the words was semantic. Caroline Spurgeon had used her own knowledge of English and of Shakespeare to produce these chains; I wanted a resource other than my own memory so as to automate more of the procedure and, thus, make it more ruleful. Since the resource needed to be based on words placed in structures reflective of semantic relationships, I looked to thesauri and synonym dictionaries for help. Initially, in looking at Hamlet, I simulated an automated look-up procedure using Webster’s Dictionary of Synonyms, Roget’s, and Brown’s List of Scientific Words. The VIA (Verbally-Indexed Associations) program then produced output such as in Figure 1.

I used the results from this system as the basis of a paper given at the World Shakespeare Congress in Vancouver; the scholars felt that the VIA program had turned up the major themes/motifs in the play that had been noticed over the many span of years during which Hamlet had been an object of literary interpretation, but also there were some shifts in emphases which no one had ever discussed in print but which were interesting once pointed out. So here was an early very encouraging validation of the use of such resources but, of course, since I had used a number of lexicons, I could not say which was the most promising for an automated system (as that time – early 1960’s – putting such lexicons into computer-accessible form was a major undertaking; hence, I wanted to select just one, at least for starters).

Next, I conducted a rather extensive comparison (more rigorously extensive, I believe than anything hitherto) of Webster’s Dictionary of Synonyms and of two thesauri, Roget’s International Thesaurus, 3rd ed. and the University Thesaurus. Both of these

* Invited talk at the International Conference on Conceptual Knowledge Processing. Technische Hochschule Darmstadt, March 1 1996
Fig. 1. Hamlet example
thesauri are conceptual thesauri, which is to say that there is a hierarchical structure, moving at the top from the most general or abstract to, at the bottom, words more restricted in meaning. Also, as you know, the groupings at the bottom are based upon those words which are most closely related semantically. So, in effect, at the bottom of the hierarchy, you have a kind of dictionary of synonyms; but it is not alphabetical, rather it is located according to the concepts further up the tree. For this comparison, I shifted away from a literary text and looked at a translation of an entire chapter of a work entitled, in translation, Soviet Military Strategy. The search keys included all the words in the same root group as Dead, Decline, and so on up to ten groups. I then looked those words up directly in the alphabetic Webster’s Dictionary of Synonyms and I used the indices in the thesauri as guides to the entries there. Figure 2 shows a sample for the root group “Dead” of the word lists which were then submitted to the VIA program.

![Fig. 2. DEAD Root Group](image)

The difference in number between the words gleaned from the two entries in the Synonym Dictionary and those from the entries from the thesauri is obviously considerable. In fact, the total number of words in the lists under the Dictionary of Synonyms is 12; the total for Roget’s International Thesaurus is 268, and for Roget’s University Thesaurus, 2452. The outputs also varied considerably; we concluded that the Dictio-
nary of the Synonyms gave us too little information and the University Thesaurus gave us too much, particularly since many of the words seemed at best only remotely related to the search keys. Thus, we decided to use the International Thesaurus, noting that in order to use it with confidence, it would be desirable to know much more about its non-hierarchical structure (we have sometimes referred to this as the implicit structure) than anyone did at that time; we also, of course, wondered how well it represented the semantic space of the English language and thus, how useful it would be for texts from a broad spectrum of conceptual domains.

Over the years, we have tested the Thesaurus on a range of applications/tasks while, at the same time working on ways of representing the semantic information it contains.

Almost all programs directed toward some form of content analysis (information retrieval in a broad category under which some of the work to be mentioned falls) have some type of morphological analyzer which will pull together words which have the same stem (as in Dead and Deaden). For the English language, the affixes at the end of the word (suffixes) generally carry primarily syntactic information; thus there is not a great likelihood of distorting semantic relationships when, in effect, chopping off suffixes so as to put words together. In contrast, the affixes at the beginning of words (prefixes) are primarily bearers of semantic information; they reverse the meaning, or intensify the meaning, and so on. Dealing with prefixes is therefore a matter of great delicacy, as well as of difficulty. For example, in the word “atypical” the letter “a” is a prefix (reversing the meaning of “typical”), but in many other words: “apple,” “anyway,” and so on, the letter “a” does not function as a prefix. The process of researching this question drew me into linguistics as a discipline (I thought linguistics might have good automatable rules; they did not) as well as into a project which provided another test of the Thesaurus.

Prior to this test, we had produced a “brute-force” prefix-recognition program (based on words in the Random House Dictionary) and tested it by running it against all the content words in Chapter One of yet another translation (Praeger) of Soviet Military Strategy. Although the results from this effort were not perfect (I concluded that the likelihood of developing manageable algorithms to deal effectively with all publications, both as to document type and era of publication, was near zero), they were good enough to provide a control against which to test the possibility of using the Thesaurus to identify prefixes. Our thought was that the proximity within the Thesaurus might tell us when two words, differing only as to the initial string of characters (eg. dis-assemble and assemble), shared the same stem.

Class Six: Intellect
I. Intellectual Facilities and Properties
L. Conformity to Fact
515. Truth
515.3
Accuracy, correctness, rightness (correctness)

Fig. 3. Hierarchy in Roget’s Thesaurus
Our doctoral student Sam Warfel undertook the study and concluded that if the Thesaurus hierarchy were regarded as having six levels (Figure 3), in a large number of cases it is safe to assume that words which occur in the same category at any level are more closely related to each other than to words outside that category, e.g., a word which occurs in 515.3 will be more closely related to a word in 515.4 than to word in 517.2. He also noted, however, that the hierarchical structure did not always show relationships that could be shown, given the information in the Thesaurus (Figure 4).

Warfel then went on to develop an algorithm which assumed an equivalence table of such related categories. This algorithm could, for example, properly analyze the word “prevent” as non-prefixed by determining that the word “prevent” does not occur in any of the categories related to the categories associated with the unprefixed root “vent.” Tested against the “control” group from my earlier work, the algorithm correctly paired 8 of the 9 pairs I had identified as correctly matched by the “brute-force” program, correctly excluded 3 which the program had included, and dealt with program pairings about which I was uncertain (good in some contexts, e.g., 17th century texts, but not in others, e.g., 20th century texts) by including 11 and excluding 14. The algorithm also dealt with cases where the identity of the prefix is in question. For example (Figure 5), the word “unideal” could be interpreted by a program as either (un)ideal or (uni)deal. The algorithm correctly paired ideal and (un)ideal and rejected deal and (uni)deal.

Warfel’s study thus showed the Thesaurus to be quite a reliable guide to semantic relatedness in English. There were some problems created by the placement of words in the hierarchical tree. For example “weave” and “unweave” occur in different Classes (Space) and (Abstract Relations) and thus are not shown as connected. More recent work, both with Bryan’s T-graphs for thesaural representation and exploration and, with the more illuminating representations provided by the concept lattices based upon Formal Contexts, overcomes the relational distortions produced by the tree. We have not used Formal Concept Analysis to look at the issue of automating prefixation, but it is something to think about.

In an earlier day, Walter and I talked to the group here in Darmstadt about Robert Bryan’s approach to representing the Thesaurus using T-graphs (Figure 6), and I will not say any more about that particular model now. But again, it was used by our graduate students Archie Patrick, Donna Mooney (Talburt & Mooney, 1990), and Victor Jacuzzi to show that the Thesaurus can be used to disambiguate among word senses, by using the locations within the Thesaurus of words having more than one meaning and which therefore appear in more than one place in the Thesaurus. Like Formal Concept Analysis, the Bryan model overrides the hierarchical structure of the Thesaurus so as to show relationships scattered throughout the hierarchical tree. The lattice provided by Formal Concept Analysis makes such relationships much more evident to the human user of such analyses, than do the lists of words upon which we had earlier relied. I cannot forbear showing a couple of slides (Figures 7 and 8) concerning the word “concept,” first scattered throughout the Thesaurus by the tree structure, and then as ordered by the Formal Concept Analysis lattice. The importance of the disambiguation provided by both the Bryan approach and Formal Concept Analysis cannot be over-emphasized; the challenge is to determine how to make such results effectively available to systems.
Fig. 4. Relationships in Roget’s Thesaurus

UNIDEAL

(UN) IDEAL

(UNI) IDEAL

Fig. 5. Identifying prefixes
Fig. 6. Bryan’s T-graphs: Entries as intersections of Words and Categories in the Thesaurus

used for large information analysis and retrieval applications (searching entire digitized libraries, for example).

I will just briefly mention other “tests” of the Thesaurus: first, a distribution of the so-called Chinese simplicia, as categorized by Karlgren, against categories in the Thesaurus showed semantic gaps conformal with observations made more ‘anecdotally’ by scholars comparing aspects of Chinese and English; secondly, research by John Brady and Lim Liaw using the Thesaurus to provide a conceptual overview of abstracts of articles in the 1985 SCAMC (Symposium on Computer Applications in Medical Care) Proceedings produced results which were again quite satisfactory (never perfect!); third, a distribution of the Unix Spelling Dictionary against terms occurring in the Thesaurus shows a very high correlation with the grouping of entries in the Thesaurus as to semicolon group, paragraph, category, etc. (That is terms in the dictionary “pile up” in those areas in the Thesaurus which also have large numbers of terms.) A distribution of the Oxford Advanced Learner’s Dictionary against the Thesaurus also has produced a very high correlation; fourth, inasmuch as the sentence “Time flies like an arrow” is a classic in discussion of ambiguity in the English language, it is worth noting that the Thesaurus, used by the same GAME program as for the SCAMC abstracts, produces the reading that seems often to come to mind first, i.e., the speed with which times goes by; fifth, Brady again applied the GAME program to a group of text samples from a DARPA TIPSTER task (these were articles having to do with business startups and articles which might be construed by a computer program to be concerned with business startups (because of the presence of ambiguous words), but in fact were about something else altogether). Using the Thesaurus, as it is designed to do, the GAME program appropriately rejected all the misleading samples and accepted all but one of the samples deemed relevant to the topic.

As a final example of testing the Thesaurus against other data bases, I will cite John Old’s (1993) study, written up in a very nice paper for the Midwest AI group in
Fig. 7. The word “concept” scattered throughout the tree structure

Fig. 8. Formal concept lattice of “concept”
the U.S., of three lexical networks based on the word “over.” For his study, John used, first, the work of the well-known linguist, George Lakoff and his associate, Claudia Brugman (1988), secondly the Oxford English Dictionary, and third, the Thesaurus. There is no time to go into John’s methodology here, but he concluded that the central sense for Brugman and Lakoff (whose methodology is somewhat difficult to ascertain) is ABOVE+ACROSS, for the OED it is ACROSS TO, and for the Thesaurus, ADDITIONALLY. John did this work prior to our group’s fortunate meeting with Professor Dr. Wille and he has subsequently produced a concept lattice for the senses of “over” in the Thesaurus. It may interest you to see Brugman and Lakoff’s Radial category network (Figure 9 - the notion of “over” and “across” seems to be conveyed by “vertical” and “extended contact” above “ground;” notice that they also have the senses of “excess, “repetition” and “end” in this representation); now for a look at the representation John produced for the OED (Figure 10, note senses in the upper left-hand corner); next at the Thesaurus in John’s representation (Figure 11) and finally the Concept Lattice (Figures 12 and 13); the point I am making here is that the senses in the other two networks are in the Thesaurus and certainly the Concept Lattice sets them out in an accessible way. We were particularly pleased to see that the OED senses (much richer than the Brugman-Lakoff) can be extracted from the Thesaurus.

Fig. 9. Brugman and Lakoff’s categories for “over” (Old, 1991)

In summary for this section of my presentation, I have indicated the extended range of the Thesaurus when used for a variety of tasks involving quite different semantic domains within the English language. For the types of retrieval/analysis tasks cited, the Thesaurus is good, albeit not perfect, and the fact that the disambiguation using the Thesaurus was completely automated is of major significance. Since the goal of Formal
Fig. 10. OED senses of “over” (Old, 1991)

Fig. 11. “Over” in the Thesaurus (Old, 1991)
Fig. 12. Concept Lattice for “over”

Fig. 13. Concept Lattice for “over”
Concept Analysis is to aid the human investigator (and the examples I have given show how effective it can be in that respect), it might be helpful to think further as to how to extend its automated operations, which now take place between the Formal Context and the production of the Concept Lattice, in order to provide an interface between the sense disambiguation it provides and large “data-crunching” systems so that the human investigator will not be called upon to deal with data too dense to be readily comprehended. TOSCANA obviously provides one thrust in that direction; it is not clear to me whether, at this point, TOSCANA is the answer for extremely large data bases.

Next I want to discuss some apparent, or possibly real, major deficiencies in the Thesaurus as it stands which should be dealt with for applications extending beyond the type of main concept/idea retrieval I have talked about earlier. I will concentrate upon two areas here: first, how to come up with functions (primarily expressed by the relationship between verbs and other segments of a clause) and secondly, how to cope with highly specialized vocabularies. As part of both discussions, we should consider implications for automated translation among languages.

The discussion of function is based upon our graduate student and research associate John Brady’s thesis: Structural and Behavioral Representation in Roget’s International Thesaurus. Preliminary, Brady notes that the Thesaurus “lacks explicit representations of procedures and actions. For example, Category 329 mentions words about cooking, kitchen, utensils, and manners of cooking. But nowhere in that category is there a function for, for example, making toast, e.g.:

```
MAKE-TOAST:
ELECTRIC_TOASTER × BREAD
→ TOAST
```

Brady also points out that his approach to representing behavior in the Thesaurus contrasts with that suggested for WordNet by George Miller. Miller notes that “In terms of the present approach to lexical semantics, function information should be included by pointers to verb concepts” (Miller 1992, p. 23). Taking the noun “hammer” as his example, Miller suggests that “hammer” should have a functional pointer to the verbs “hammer” and “pound.” Brady agrees that nouns need a reference to their primary function, but argues that the functions usually involve more than just the primary object. Brady would therefore have pointers from the verb to the nouns it uses, rather than the reverse from noun to verbs as in WordNet. So that in Brady’s approach, the verb “hammer” would have, for example, a USES relationship with the noun “hammer” as well as with the nouns “nail” and “board.”

Brady begins and ends his treatment with Formal Concept Lattices. The first one (Figure 14) does not contain sufficient information to show how to combine bread and a toaster so as to produce toast. In order to produce the final lattice, which Brady feels does have the necessary information, Brady looks at work in computer science concerned with representing functions and then maps that back onto the Formal Concept Lattice. First, he looked at object-oriented notation based on work by Coad and Yourdon (1990) (Figure 15). Brady points out that the inheritance relationships are preserved as the notation is switched from concept lattices to the Object Oriented Analysis notation.
In this Figure, the concepts from the concept lattice are represented as classes, and the inheritance links are represented as half circles. The classes are rounded rectangles and are divided into three sections. The first section of the class represents the names of the class; as class names, Brady used the corresponding concept names from the Concept Lattice. If the concept has an object generator, Brady includes the object name as part of the class name. The next two sections of the class represent the attributes and services of the class. The attributes contain the information kept about a class and the services are the actions a class can perform. For the Thesaurus, Brady notes that it is convenient to associate nouns with attributes and verbs with services (Figure 16).

Fig. 14. Concept Lattice of 'toast', 'toaster', and 'bread'

In OOA diagrams, each service should have a defined behavior. Look at the verb “toast” in class B3 in Figure 16. Even though the service “toast” does not explicitly appear in the services section of class B3, class B3 inherits all of the attributes and services from class B11. The service “toast” is included in class B3 with the specific sense of toast as a method of cooking. Since class B3 contains only services, the attribute “toast” from class B11 will need to be overridden as an empty attribute. Along with the inheritance links from Figure 15, Brady included the behavior for the verb “toast” in Figure 16. The OOA notation for a Whole-Part link is a small triangle. The notation for a Message is a thick-lined arrow. Using the OOA methodology, the Whole-Part link may be employed to represent a “uses” relationship. In the case of the verb “toast,” the Whole-Part links represent the action of toasting, using class B4 (containing “toaster”) and class B16 (containing “bread”). The Message link has been used to show a constructor message sent to the B10 class (containing the noun “toast”). Similar links may be drawn for representing the behavior of the other services in class B3 and class B8.
Fig. 15. After the Manner of Coad and Yourdon

Fig. 16. Behavior for the Verb 'toast' in Concept B3
Brady notes that although he used his own “native-speaker” understanding of the English language to determine where the Whole-Part and Message links should be applied, he believes that further analysis of the configuration and arrangement of the paragraphs within the Categories could help to automate the process of determining the Whole-Part and Message links. For example, Category 329 contains a paragraph for cooking styles, while Category 328 contains a paragraph for heating styles. The two paragraphs are linked by the word “cooking.” So, Brady notes, while there is no explicit link between B3 - 329.4 (the verb “toast”) and B4 - 328.33 (electric toaster), there are word links elsewhere in Categories 328 and 329. Within Category 329, we can informally say that a cooking method (B3) USES a cooking style. Furthermore, we can informally say that a cooking style IS-A heating style. Finally, we can informally say that a cooking device (B4) USES a heating style. Informally, this path traces a link between cooking methods (B3) and cooking devices (B4). As Brady notes, this reasoning is informal and an attempt should be made to formalize the Whole-Part links between the Categories so that automatic identification of those links can occur. It is quite possible that the excellent work Uta Priss (1996) has done with WordNet will be helpful here: either by analogy or by importation from WordNet (with the functional arrows reversed, to be true Brady’s approach). At any rate if we want to deal with functionality here we have a deficiency in the Thesaurus that requires remedy.

Brady ultimately rejects OOA diagrams, as well as work by a number of other scientists, in favor of an approach by William Cook as a way to provide a more robust representation of behavior or function in the structures in the Thesaurus. Brady rejected several of the other approaches because the compatibility of behavior is imposed by the inheritance hierarchy (top-down), rather than having inheritance built from the compatibility of behavior. Cook argued for the latter approach, noting that it is necessary to build a behaviorally compatible hierarchy because “there is a growing consensus that inheritance is a ‘producer’s mechanism’ (Meyer 1990) that has little to do with a client’s use of classes” (Cook, 1992, p. 1). Brady then proceeds to define a Toast conformance hierarchy in terms of procedural/functional constraints. Again he stresses that a manual process was used to identify the constraints for each of the Thesaurus’ paragraphs used to build the concept lattice in Figure 14 and calls for further research to ensure that the constraints do exist in the Thesaurus and that they could be automatically recognized.

The conformance hierarchy using the Cook notations is shown in Figure 17. Brady notes that examination of the conformance hierarchy in comparison with the compatibility of behavior associated with the original concept lattice shows that several words are not compatible. Inasmuch as HeaterThing is an object and HeatProcessThing is a process, the words “toast,” “grill” and “barbecue” in the original concept lattice are used both as nouns and as verbs and would be split across HeaterThing and HeatProcessThing. Since this dual usage causes problems with the compatibility of behavior, Brady labels the occurrences of the words as “toast-N,” “toast-V,” “grill-N,” “grill-V,” “barbecue-N,” and “barbecue-V” depending on whether the word is used as a noun or a verb. Brady goes on to state that a conformance hierarchy as a partial order may be used as a multivalued attribute in a Formal Context. The original context used to build the concept lattice may be supplemented with the multivalued attribute representing the partial ordering of the conformance hierarchy. He thus modified his formal context and
produced the concept lattice in Figure 18. Here you see a clear separation of the heater from the heating process and the substance being heated. There is a clear distinction between the noun “toast” and the verb “toast” (as there was not in Figure 14). In Figure 18, the paragraphs of the Thesaurus that are intuitively subconcepts of others are shown as such. The concept lattice shows that the concept B18 - SubstanceThing subsumes the concepts of toast, bread, and substances.

Fig. 17. Conformance Hierarchy

Finally, I want to report on the work of Michael McHale and John Crowter, described in their report: Constructing a Lexicon from a Machine Readable Dictionary (November 1994). The aspect of their effort of interest here is mapping the word senses associated with Longman’s Dictionary of Contemporary English into the relational hierarchy of the Thesaurus. Their goal was not only to label the word sense with one of the 1042 “semantic primitives” (level 4) in the Thesaurus but to place the words in the Thesaurus at the semicolon group level. To succeed, they of course had to deal with ambiguity. Apparently, they were unaware of Formal Concept Analysis and dealt with the hierarchy as it exists, assuming that the closer the semantic relatedness between two words, whatever the relatedness is, the closer the words are in the hierarchy. Therefore, they reasoned, measures of distance in the hierarchy can be roughly construed as measures of relatedness or semantic distance. The methods of measuring distance they used ranged in complexity from the method of quartets (the word of our associates Talburt and Mooney using the Bryan model I mentioned earlier) to as simple a method as counting the number of intervening words found when using a standard tree traversal algorithm. The best of the algorithms they tested (this is an algorithm for which they have applied for a patent, and it apparently combines Talburt and Mooney with other approaches) correctly mapped the word senses from the Longman Dictionary to the Thesaurus about 63% of the time. They note that “while this is not as high as we would
have liked, it is high enough to provide the basis of a semi-automatic tool. The tool could provide candidate locations along with the evidence it has compiled for each location."

(One can imagine that concept lattices would considerably enhance the meaningfulness of the output for the human investigator. Also, Jacuzzi’s algorithm, which produced finer discriminations than Talburt and Mooney’s algorithm, might have increased the percentage of successful mappings.) Even with less than ideal results, they were able to use an integrated Roget/Longman Dictionary lexical browser for aero-space terminology which they felt performed well enough so as to provide a “rather nice demonstration of some of the functionalities that are possible with tightly coupled lexical resources. The most obvious use of such a tool would be for people who need to explore a new domain in depth; in this capacity the browser would be an aid to learning.” Here is the kind of application for which Roget’s 2000, incorporating Formal Concept Analysis, would be a natural.

The exciting thing about this research from our point of view (other than having other researchers use the Thesaurus in a serious way) is the mapping of a dictionary onto the Thesaurus. Even a 63% success rate will greatly enhance the scope of the Thesaurus and could presumably provide an even better structure for the mapping of the remaining 37% as well as entirely different lexicons onto the Thesaurus. So that one could anticipate being able to deal with the vocabularies in specialized domains (e.g., McHale and Crowter’s work with aerospace engineering) as well as with the more general-purpose vocabulary in which domain-specific terms find their context.
McHale and Crowter, in their summary, note that their “original motivation in doing the mapping was to supply a readily available, computable form of semantics to the words in LDOCE. Obviously, the definitions themselves are rich semantic representations, but they lack the quality of being readily computable. To understand the semantics of a definition requires an understanding of all the included words and an understanding of how those words interrelate within the definition. The hierarchy has none of this. It simply supplies a relative measure of relatedness for the words. That is, it can indicate which words are more closely related without indicating how they are related.” Again, Formal Concept Analysis helps here and with the kind of augmentation envisioned by Brady, Thesaurus 2000 would indeed be powerful.

Given an enhanced Thesaurus, would we be in a better position vis-a-vis Machine Translation than we are today? After all the Thesaurus is in English, whereas MT requires at least pairwise mappings. Trivially, there are Roget-like lexicons in other languages (German and Spanish, for example) which would provide for more straightforward mapping between those pairs. But a more promising direction would be to utilize some form of interlingua (a reasonably popular approach to MT) which would map onto representations of an enhanced Thesaurus to control proper sense selection. The interlingua should be tightly linked to the Thesaural structure. As the mapping from a given language to English occurs, records of the mappings source language could then be used to construct a Thesaurus in the other language.

In summary, we have seen first, that the thesaurus has been tested on a variety of written texts for proto information retrieval/language analysis tasks, and that its performance has been good (amazingly good in our opinion). Secondly, we have noted deficiencies in the Thesaurus, as it stands, and suggested broad directions for remediating those deficiencies. Formal Concept Analysis has been shown to have great power for revealing the semantic structure within the Thesaurus of individual word senses, so that it already is an aid to the human investigator and could be employed for the kind of application mentioned by McHale and Crowter. I am wondering if lattices could not also be used to reveal thematic shifts within literary work (so that one could see, for example, that the particularized names, e.g., Claudius and Gertrude, at the beginning of Hamlet gives way to impersonal general names, e.g., “man” and “woman” at the end of the play). For large information retrieval tasks, construction of the Formal Context would be automated, disambiguation which results in lattice construction would then take place, and guidelines/rules for reducing the output, e.g., both the final structuring of the lattice and the portions to be displayed (e.g., nesting or main overview as in TOSCANA) would be utilized so as best to guide the information seeker.

References

